• 0 Posts
  • 48 Comments
Joined 2 months ago
cake
Cake day: July 7th, 2024

help-circle
  • What is it then? If you say it’s a wave, well, that wave is in Hilbert space which is infinitely dimensional, not in spacetime which is four dimensional, so what does it mean to say the wave is “going through” the slit if it doesn’t exist in spacetime? Personally, I think all the confusion around QM stems from trying to objectify a probability distribution, which is what people do when they claim it turns into a literal wave.

    To be honest, I think it’s cheating. People are used to physics being continuous, but in quantum mechanics it is discrete. Schrodinger showed that if you take any operator and compute a derivative, you can “fill in the gaps” in between interactions, but this is just purely metaphysical. You never see these “in between” gaps. It’s just a nice little mathematical trick and nothing more. Even Schrodinger later abandoned this idea and admitted that trying to fill in the gaps between interactions just leads to confusion in his book Nature and the Greeks and Science and Humanism.

    What’s even more problematic about this viewpoint is that Schrodinger’s wave equation is a result of a very particular mathematical formalism. It is not actually needed to make correct predictions. Heisenberg had developed what is known as matrix mechanics whereby you evolve the observables themselves rather than the state vector. Every time there is an interaction, you apply a discrete change to the observables. You always get the right statistical predictions and yet you don’t need the wave function at all.

    The wave function is purely a result of a particular mathematical formalism and there is no reason to assign it ontological reality. Even then, if you have ever worked with quantum mechanics, it is quite apparent that the wave function is just a function for picking probability amplitudes from a state vector, and the state vector is merely a list of, well, probability amplitudes. Quantum mechanics is probabilistic so we assign things a list of probabilities. Treating a list of probabilities as if it has ontological existence doesn’t even make any sense, and it baffles me that it is so popular for people to do so.

    This is why Hilbert space is infinitely dimensional. If I have a single qubit, there are two possible outcomes, 0 and 1. If I have two qubits, there are four possible outcomes, 00, 01, 10, and 11. If I have three qubits, there are eight possible outcomes, 000, 001, 010, 011, 100, 101, 110, and 111. If I assigned a probability amplitude to each event occurring, then the degrees of freedom would grow exponentially as I include more qubits into my system. The number of degrees of freedom are unbounded.

    This is exactly how Hilbert space works. Interpreting this as a physical infinitely dimensional space where waves really propagate through it just makes absolutely no sense!


  • i’d agree that we don’t really understand consciousness. i’d argue it’s more an issue of defining consciousness and what that encompasses than knowing its biological background.

    Personally, no offense, but I think this a contradiction in terms. If we cannot define “consciousness” then you cannot say we don’t understand it. Don’t understand what? If you have not defined it, then saying we don’t understand it is like saying we don’t understand akokasdo. There is nothing to understand about akokasdo because it doesn’t mean anything.

    In my opinion, “consciousness” is largely a buzzword, so there is just nothing to understand about it. When we actually talk about meaningful things like intelligence, self-awareness, experience, etc, I can at least have an idea of what is being talked about. But when people talk about “consciousness” it just becomes entirely unclear what the conversation is even about, and in none of these cases is it ever an additional substance that needs some sort of special explanation.

    I have never been convinced of panpsychism, IIT, idealism, dualism, or any of these philosophies or models because they seem to be solutions in search of a problem. They have to convince you there really is a problem in the first place, but they only do so by talking about consciousness vaguely so that you can’t pin down what it is, which makes people think we need some sort of special theory of consciousness, but if you can’t pin down what consciousness is then we don’t need a theory of it at all as there is simply nothing of meaning being discussed.

    They cannot justify themselves in a vacuum. Take IIT for example. In a vacuum, you can say it gives a quantifiable prediction of consciousness, but “consciousness” would just be defined as whatever IIT is quantifying. The issue here is that IIT has not given me a reason to why I should care about them quantifying what they are quantifying. There is a reason, of course, it is implicit. The implicit reason is that what they are quantifying is the same as the “special” consciousness that supposedly needs some sort of “special” explanation (i.e. the “hard problem”), but this implicit reason requires you to not treat IIT in a vacuum.


  • Bruh. We literally don’t even know what consciousness is.

    You are starting from the premise that there is this thing out there called “consciousness” that needs some sort of unique “explanation.” You have to justify that premise. I do agree there is difficulty in figuring out the precise algorithms and physical mechanics that the brain uses to learn so efficiently, but somehow I don’t think this is what you mean by that.

    We don’t know how anesthesia works either, so he looked into that and the best he got was it interrupts a quantom wave collapse in our brains

    There is no such thing as “wave function collapse.” The state vector is just a list of probability amplitudes and you reduce those list of probability amplitudes to a definite outcome because you observed what that outcome is. If I flip a coin and it has a 50% chance of being heads and a 50% chance of being tails, and it lands on tails, I reduce the probability distribution to 100% probability for tails. There is no “collapse” going on here. Objectifying the state vector is a popular trend when talking about quantum mechanics but has never made any sense at all.

    So maybe Roger Penrose just wasted his retirement on this passion project?

    Depends on whether or not he is enjoying himself. If he’s having fun, then it isn’t a waste.


  • It is only continuous because it is random, so prior to making a measurement, you describe it in terms of a probability distribution called the state vector. The bits 0 and 1 are discrete, but if I said it was random and asked you to describe it, you would assign it a probability between 0 and 1, and thus it suddenly becomes continuous. (Although, in quantum mechanics, probability amplitudes are complex-valued.) The continuous nature of it is really something epistemic and not ontological. We only observe qubits as either 0 or 1, with discrete values, never anything in between the two.


  • The only observer of the mind would be an outside observer looking at you. You yourself are not an observer of your own mind nor could you ever be. I think it was Feuerbach who originally made the analogy that if your eyeballs evolved to look inwardly at themselves, then they could not look outwardly at the outside world. We cannot observe our own brains as they only exist to build models of reality, if our brains had a model of itself it would have no room left over to model the outside world.

    We can only assign an object to be what is “sensing” our thoughts through reflection. Reflection is ultimately still building models of the outside world but the outside world contains a piece of ourselves in a reflection, and this allows us to have some limited sense of what we are. If we lived in a universe where we somehow could never leave an impression upon the world, if we could not see our own hands or see our own faces in the reflection upon a still lake, we would never assign an entity to ourselves at all.

    We assign an entity onto ourselves for the specific purpose of distinguishing ourselves as an object from other objects, but this is not an a priori notion (“I think therefore I am” is lazy sophistry). It is an a posteriori notion derived through reflection upon what we observe. We never actually observe ourselves as such a thing is impossible. At best we can over reflections of ourselves and derive some limited model of what “we” are, but there will always be a gap between what we really are and the reflection of what we are.

    Precisely what is “sensing your thoughts” is yourself derived through reflection which inherently derives from observation of the natural world. Without reflection, it is meaningless to even ask the question as to what is “behind” it. If we could not reflect, we would have no reason to assign anything there at all. If we do include reflection, then the answer to what is there is trivially obvious: what you see in a mirror.




  • Why are you isolating a single algorithm? There are tons of them that speed up various aspects of linear algebra and not just that single one, and many improvements to these algorithms since they were first introduced, there are a lot more in the literature than just in the popular consciousness.

    The point is not that it will speed up every major calculation, but these are calculations that could be made use of, and there will likely even be more similar algorithms discovered if quantum computers are more commonplace. There is a whole branch of research called quantum machine learning that is centered solely around figuring out how to make use of these algorithms to provide performance benefits for machine learning algorithms.

    If they would offer speed benefits, then why wouldn’t you want to have the chip that offers the speed benefits in your phone? Of course, in practical terms, we likely will not have this due to the difficulty and expense of quantum chips, and the fact they currently have to be cooled below to near zero degrees Kelvin. But your argument suggests that if somehow consumers could have access to technology in their phone that would offer performance benefits to their software that they wouldn’t want it.

    That just makes no sense to me. The issue is not that quantum computers could not offer performance benefits in theory. The issue is more about whether or not the theory can be implemented in practical engineering terms, as well as a cost-to-performance ratio. The engineering would have to be good enough to both bring the price down and make the performance benefits high enough to make it worth it.

    It is the same with GPUs. A GPU can only speed up certain problems, and it would thus be even more inefficient to try and force every calculation through the GPU. You have libraries that only call the GPU when it is needed for certain calculations. This ends up offering major performance benefits and if the price of the GPU is low enough and the performance benefits high enough to match what the consumers want, they will buy it. We also have separate AI chips now as well which are making their way into some phones. While there’s no reason at the current moment to believe we will see quantum technology shrunk small and cheap enough to show up in consumer phones, if hypothetically that was the case, I don’t see why consumers wouldn’t want it.

    I am sure clever software developers would figure out how to make use of them if they were available like that. They likely will not be available like that any time in the near future, if ever, but assuming they are, there would probably be a lot of interesting use cases for them that have not even been thought of yet. They will likely remain something largely used by businesses but in my view it will be mostly because of practical concerns. The benefits of them won’t outweigh the cost anytime soon.


  • Uh… one of those algorithms in your list is literally for speeding up linear algebra. Do you think just because it sounds technical it’s “businessy”? All modern technology is technical, that’s what technology is. It would be like someone saying, “GPUs would be useless to regular people because all they mainly do is speed up matrix multiplication. Who cares about that except for businesses?” Many of these algorithms here offer potential speedup for linear algebra operations. That is the basis of both graphics and AI. One of those algorithms is even for machine learning in that list. There are various algorithms for potentially speeding up matrix multiplication in the linear. It’s huge for regular consumers… assuming the technology could ever progress to come to regular consumers.


  • bunchberry@lemmy.worldtoScience Memes@mander.xyzCrystals
    link
    fedilink
    English
    arrow-up
    2
    arrow-down
    1
    ·
    edit-2
    25 days ago

    OrchOR makes way too many wild claims for there to easily be any evidence for it. Even if we discover quantum effects (in the sense of scalable interference effects which have absolutely not been demonstrated) in the brain that would just demonstrate there are quantum effects in the brain, OrchOR is filled with a lot of assumptions which go far beyond this and would not be anywhere near justified. One of them being its reliance on gravity-induced collapse, which is nonrelativistic, meaning it cannot reproduce the predictions of quantum field theory, our best theory of the natural world.

    A theory is ultimately not just a list of facts but a collection of facts under a single philosophical interpretation of how they relate to one another. This is more of a philosophical issue, but even if OrchOR proves there is gravitational induced collapse and that there is quantum effects in the brain, we would still just take these two facts separately. OrchOR tries to unify them under some bizarre philosophical interpretation called the Penrose–Lucas argument that says because humans can believe things that are not proven, therefore human consciousness must be noncomputable, and because human consciousness is not computable, it must be reducible to something that you cannot algorithmically predict its outcome, which would be true of an objective collapse model. Ergo, wave function collapse causes consciousness.

    Again, even if they proved that there is scalable quantum interference effects in the brain, even if they proved that there is gravitationally induced collapse, that alone does not demonstrate OrchOR unless you actually think the Penrose-Lucas argument makes sense. They would just be two facts which we would take separately as fact. It would just be a fact that there is gravitionally induced collapse, a fact that there is scalable quantum interference effects in the brain but there would be no reason to adopt any of their claims about “consciousness.”

    But even then, there is still no strong evidence that the brain in any way makes use of quantum interference effects, only loose hints that it may or not be possible with microtubules, and there is definitely no evidence of the gravitationally induced collapse.


  • A person who would state they fully understand quantum mechanics is the last person i would trust to have any understanding of it.

    I find this sentiment can lead to devolving into quantum woo and mysticism. If you think anyone trying to tell you quantum mechanics can be made sense of rationally must be wrong, then you implicitly are suggesting that quantum mechanics is something that cannot be made sense of, and thus it logically follows that people who are speaking in a way that does not make sense and have no expertise in the subject so they do not even claim to make sense are the more reliable sources.

    It’s really a sentiment I am not a fan of. When we encounter difficult problems that seem mysterious to us, we should treat the mystery as an opportunity to learn. It is very enjoyable, in my view, to read all the different views people put forward to try and make sense of quantum mechanics, to understand it, and then to contemplate on what they have to offer. To me, the joy of a mystery is not to revel in the mystery, but to search for solutions for it, and I will say the academic literature is filled with pretty good accounts of QM these days. It’s been around for a century, a lot of ideas are very developed.

    I also would not take the game Outer Wilds that seriously. It plays into the myth that quantum effects depend upon whether or not you are “looking,” which is simply not the case and largely a myth. You end up with very bizarre and misleading results from this, for example, in the part where you land on the quantum moon and have to look at the picture of it for it to not disappear because your vision is obscured by fog. This makes no sense in light of real physics because the fog is still part of the moon and your ship is still interacting with the fog, so there is no reason it should hop to somewhere else.

    Now quantum science isn’t exactly philosophy, ive always been interested in philosophy but its by studying quantum mechanics, inspired by that game that i learned about the mechanic of emerging properties. I think on a video about the dual slit experiment.

    The double-slit experiment is a great example of something often misunderstood as somehow evidence observation plays some fundamental role in quantum mechanics. Yes, if you observe the path the two particles take through the slits, the interference pattern disappears. Yet, you can also trivially prove in a few line of calculation that if the particle interacts with a single other particle when it passes through the two slits then it would also lead to a destruction of the interference effects.

    You model this by computing what is called a density matrix for both the particle going through the two slits and the particle it interacts with, and then you do what is called a partial trace whereby you “trace out” the particle it interacts with giving you a reduced density matrix of only the particle that passes through the two slits, and you find as a result of interacting with another particle its coherence terms would reduce to zero, i.e. it would decohere and thus lose the ability to interfere with itself.

    If a single particle interaction can do this, then it is not surprising it interacting with a whole measuring device can do this. It has nothing to do with humans looking at it.

    At that point i did not yet know that emergence was already a known topic in philosophy just quantum science, because i still tried to avoid external influences but it really was the breakthrough I needed and i have gained many new insights from this knowledge since.

    Eh, you should be reading books and papers in the literature if you are serious about this topic. I agree that a lot of philosophy out there is bad so sometimes external influences can be negative, but the solution to that shouldn’t be to entirely avoid reading anything at all, but to dig through the trash to find the hidden gems.

    My views when it comes to philosophy are pretty fringe as most academics believe the human brain can transcend reality and I reject this notion, and I find most philosophy falls right into place if you reject this notion. However, because my views are a bit fringe, I do find most philosophical literature out there unhelpful, but I don’t entirely not engage with it. I have found plenty of philosophers and physicists who have significantly helped develop my views, such as Jocelyn Benoist, Carlo Rovelli, Francois-Igor Pris, and Alexander Bogdanov.


  • This is accurate, yes. The cat in the box is conscious presumably, in my opinion of cats at least, but still can be “not an observer” from the POV of the scientist observing the experiment from outside the box.

    “Consciousness” is not relevant here at all. You can write down the wave function of a system relative to a rock if you wanted, in a comparable way as writing down the velocity of a train from the “point of view” of a rock. It is coordinate. It has nothing to do with “consciousness.” The cat would perceive a definite state of the system from its reference frame, but the person outside the box would not until they interact with it.

    QM is about quite a lot more than coordinate systems

    Obviously QM is not just coordinate systems. The coordinate nature of quantum mechanics, the relative nature of it, is merely a property of the theory and not the whole theory. But the rest of the theory does not have any relevance to “consciousness.”

    and in my opinion will make it look weird in retrospect once physics expands to a more coherent whole

    The theory is fully coherent and internally consistent. It amazes me how many people choose to deny QM and always want to rush to change it. Your philosophy should be guided by the physical sciences, not the other way around. People see QM going against their basic intuitions and their first thought is it must be incomplete and needs to have additional complexity added to it to make it fit their intuitions, rather than just questioning that maybe their basic intuitions are wrong.

    Your other comment was to a Wikipedia page which if you clicked the link on your own source it would’ve told you that the scientific consensus on that topic is that what you’re presenting is a misinterpretation.

    A simple search on YouTube could’ve also brought up several videos explaining this to you.

    Edit: Placing my response here as an edit since I don’t care to continue this conversation so I don’t want to notify.

    Yes, that was what I said. Er, well… QM, as I understand it, doesn’t have to do anything with shifting coordinate systems per se (and in fact is still incompatible with relativity). They’re just sort of similar in that they both have to define some point of view and make everything else in the model relative to it. I’m still not sure why you brought coordinate systems into it.

    A point of view is just a colloquial term to refer to a coordinate system. They are not coordinate in the exact same way but they are both coordinate.

    My point was that communication of state to the observer in the system, or not, causes a difference in the outcome. And that from the general intuitions that drive almost all of the rest of physics, that’s weird and sort of should be impossible.

    No, it doesn’t not, and you’re never demonstrated that.

    Sure. How is it when combined with macro-scale intuition about the way natural laws work, or with general relativity?

    We have never observed quantum effects on the scale where gravitational effects would also be observable, so such a theory, if we proposed one, would not be based on empirical evidence.

    This is very, very very much not what I am doing. What did I say that gave you the impression I was adding anything to it?

    You literally said in your own words we need to take additional things into account we currently are not. You’re now just doing a 180 and pretending you did not say what literally anyone can scroll up and see that you said.

    I am not talking about anything about retrocausality here, except maybe accidentally.

    Then you don’t understand the experiment since the only reason it is considered interesting is because if you interpret it in certain ways it seems to imply retrocausality. Literally no one has ever treated it as anything more than that. You are just making up your own wild implications from the experiment.

    I was emphasizing the second paragraph; “wave behavior can be restored by erasing or otherwise making permanently unavailable the ‘which path’ information.”

    The behavior of the system physically changes when it undergoes a physical interaction. How surprising!


  • bunchberry@lemmy.worldtoScience Memes@mander.xyzdouble slit
    link
    fedilink
    English
    arrow-up
    1
    arrow-down
    1
    ·
    edit-2
    2 months ago

    Both these figures are embarrassingly bad.

    Hoffman confuses function for perception and constantly uses arguments demonstrating things can interpret reality incorrectly (which is purely a question of function) in order to argue they cannot perceive reality “as it is.,” which is a huge non-sequitur. He keeps going around promoting his “theorem” which supposedly “proves” this yet if you read his book where he explains his theorem it is again clearly about function as his theorem only shows that limitations in cognitive and sensory capabilities can lead something to interpret reality incorrectly yet he draws a wild conclusion which he never justifies that this means they do not perceive reality “as it is” at all.

    Kastrup is also just incredibly boring because he never reads books so he is convinced the only two philosophical schools in the universe are his personal idealism and metaphysical realism, which the latter he constantly incorrectly calls “materialism” when not all materialist schools of thought are even metaphysically realist. Unless you are yourself a metaphysical realist, nothing Kastrup has ever written is interesting at all, because he just pretends you don’t exist.

    Metaphysical realism is just a popular worldview in the west that most Laymen tend to naturally take on unwittingly. If you’re a person who has ever read books in your life, then you’d quickly notice that attacking metaphysical realism doesn’t get you to idealism, at best it gets you to metaphysical realism being not a coherent worldview… which that is the only thing I agree with Kastrup with.



  • Kastrup is entirely unconvincing because he pretends the only two schools of philosophy in the whole universe are his specific idealism and metaphysical realism which he falsely calls the latter “materialism.” He thus never feels the need to ever address anything outside of a critique of a single Laymen understanding of materialism which is more popular in western countries than eastern countries, ignoring the actual wealth of philosophical literature.

    Anyone who actually reads books on philosophy would inevitably find Kastrup to be incredibly unconvincing as he, by focusing primarily on a single school, never justifies many of his premises. He begins from the very beginning talking about “conscious experience” and whatnot when, if you’re not a metaphysical realist, that is what you are supposed to be arguing in the first place. Unless you’re already a dualist or metaphysical realist, if you are pretty much any other philosophical school like contextual realist, dialectical materialist, empiriomonist, etc, you probably already view reality as inherently observable, and thus perception is just reality from a particular point-of-view. It then becomes invalid to add qualifiers to it like “conscious experience” or “subjective experience” as reality itself cannot had qualifiers.

    I mean, the whole notion of “subjective experience” goes back to Nagel who was a metaphysical realist through-and-through and wrote a whole paper defending that notion, “What is it like to be a Bat?”, and this is what Kastrup assumes his audience already agrees with from the get-go. He never addresses any of the criticisms of metaphysical realism but pretends like they don’t exist and he is the unique sole critic of it and constantly calls metaphysical realism “materialism” as if they’re the same philosophy at all. He then builds all of his arguments off of this premise.


  • Why do you think consciousness remains known as the “hard problem”, and still a considered contentious mystery to modern science, if your simplistic ideas can so easily explain it?

    You people really need to stop pretending like because one guy published a paper calling it the “hard problem” that it’s somehow a deep impossible to solve scientific question. It’s just intellectual dishonesty, trying to paint it as if it’s equivalent to solving the problem of making nuclear fusion work or something.

    It’s not. And yes, philosophy is full of idiots who never justify any of their premises. David Chalmers in his paper where he calls it the “hard problem” quotes Thomas Nagel’s paper as “proof” that experience is something subjective, and then just goes forward with his argument as if it’s “proven,” but Nagel’s paper is complete garbage, and so nothing Chalmers argues beyond that holds any water, but is just something a lot of philosophers blindly accept even though it is nonsensical.

    Nagel claims that the physical sciences don’t incorporate point-of-view, and that therefore point-of-view must be a unique property of mammals, and that experience is point-of-view dependent, so experience too must come from mammals, and therefore science has to explain the origin of experience.

    But his paper was wildly outdated when he wrote it. By then, we already had general relativity for decades, which is a heavily point-of-view dependent theory as there is no absolute space or time but its properties depend upon your point of view. Relational quantum mechanics also interprets quantum mechanics in a way that gets rid of all the weirdness and makes it incredibly intuitive and simple just with the singular assumption that the properties of particles depends upon point-of-view not that much different than general relativity with the nature of space and time, and so there is no absolute state of a system anymore.

    Both general relativity and relational quantum mechanics not only treat reality as point-of-view dependent but tie itself back directly to experience: they tell you what you actually expect to observe in measurements. In quantum mechanics they are literally called observables, entities identifiable by their experiential properties.

    Nagel is just an example of am armchair philosopher who does not engage with the sciences so he thinks they are all still Newtonian with some sort of absolute world independent of point-of-view. If the natural world is point-of-view dependent all the way down, then none of Nagel’s arguments follow. There is no reason to believe point-of-view is unique to mammals, and then there is further no reason to think the point-of-view dependence of experience makes it inherently mammalian, and thus there is no reason to call experience “subjective.”

    Although I prefer the term “context” rather than “point-of-view” as it is more clear what it means, but it means the same thing. The physical world is just point-of-view dependent all the way down, or that is to say, context-dependent. We just so happen to be objects and thus like any other, exist in a particular context, and thus experience reality from that context. Our experiences are not created by our brains, experience is just objective reality from the context we occupy. What our brain does is think about and reflect upon experience (reality). It formulates experience into concepts like “red,” “tree,” “atom,” etc. But it does not create experience.

    The entire “hard” problem is based on a faulty premise based on science that was outdated when it was written.

    If experience just is reality from a particular context then it makes no sense to ask to “derive” it as Chalmers and Nagel have done. You cannot derive reality, you describe it. Reality just is what it is, it just exists. Humans describe reality with their scientific theories, but their theories cannot create reality. That doesn’t even make sense. All modern “theories of consciousness” are just nonsense as they all are based on the false premise that experience is not reality but some illusion created by the mammalian brain and that “true” reality is some invisible metaphysical entity that lies beyond all possible experience, and thus they demand we somehow need a scientific theory to show how this invisible reality gives rise to the visible realm of experience. The premise is just silly. Reality is not invisible. That is the nonsensical point of view.


  • You should look into contextual realism. You might find it interesting. It is a philosophical school from the philosopher Jocelyn Benoist that basically argues that the best way to solve most of the major philosophical problems and paradoxes (i.e. mind-body problem) is to presume the natural world is context variant all the way down, i.e. there simply is no reality independent of specifying some sort of context under which it is described (kind of like a reference frame).

    The physicist Francois-Igor Pris points out that if you apply this thinking to quantum mechanics, then the confusion around interpreting it entirely disappears, because the wave function clearly just becomes a way of accounting for the context under which an observer is observing a system, and that value definiteness is just a context variant property, i.e. two people occupying two different contexts will not always describe the system as having the same definite values, but may describe some as indefinite which the other person describes as definite.

    “Observation” is just an interaction, and by interacting with a system you are by definition changing your context, and thus you have to change your accounting for your context (i.e. the wave function) in order to make future predictions. Updating the wave function then just becomes like taring a scale, that is to say, it is like re-centering or “zeroing” your coordinate system, and isn’t “collapsing” anything physical. There is no observer-dependence in the sense that observers are somehow fundamental to nature, only that systems depend upon context and so naturally as an observer describing a system you have to take this into account.


  • Quantum mechanics is incompatible with general relativity, it is perfectly compatible with special relativity, however. I mean, that is literally what quantum field theory is, the unification of special relativity and quantum mechanics into a single framework. You can indeed integrate all aspects of relativity into quantum mechanics just fine except for gravity. It’s more that quantum mechanics is incompatible with gravity and less that it is incompatible with relativity, as all the other aspects we associate with relativity are still part of quantum field theory, like the passage of time being relative, relativity of simultaneity, length contraction, etc.


  • For the first question, I would recommend reading the philosopher and physicist Francois-Igor Pris who not only seems to understand the deep philosophical origins of the problem, but also provides probably the simplest solution to it. Pris points out that we cannot treat the philosophical ramification in isolation, as if the difficulty in understanding quantum physics originates from quantum physics itself. It must originate from a framework in which we are trying to apply to quantum physics that just breaks down, and therefore it must originate from preconceived philosophical notions people have before even learning of quantum physics.

    In other words, you have to go back to the drawing board, question very foundational philosophical notions. He believes that it originates from the belief in metaphysical realism in the traditional sense, which is the idea that there is an objective reality but it is purely metaphysical, i.e. entirely invisible because what we perceive is merely an illusion created by the conscious mind, but somehow it is given rise to by equivalent objects that are impossible to see. For example, if you have a concept of a rock in your mind, that concept “reflects” a rock that is impossible to see, what Kant had called the thing-in-itself. How can a reality that is impossible to observe ever “give rise to” what we observe? This is basically the mind-body problem.

    Most academics refuse to put forward a coherent answer to this, and in a Newtonian framework it can be ignored. This problem resurfaces in quantum physics, because you have the same kind of problem yet again. What is a measurement if not an observation, and what is an observation if not an experience? You have a whole world of invisible waves floating around in Hilbert space that suddenly transform themselves into something we can observe (i.e. experience) the moment we attempt to look at them, i.e. they transform themselves suddenly into observable particles in spacetime the moment we look.

    His point is ultimately that, because people push off coming up with a philosophical solution to the mind-body problem, when it resurfaces as the measurement problem, people have no idea how to even approach it. However, he also points out that any approach you do take ultimately parallels whatever solution you would take to the mind-body problem.

    For example, eliminative materialists say the visible world does not actually exist but only the nonvisible world and that our belief we can experience things is an illusion. This parallels the Many Worlds Interpretation which gets rid of physical particles and thus gets rid of all observables and only has waves evolving in Hilbert space without observables. Idealists argue in favor of getting rid of invisible reality and just speak of the mind, which if you read the philosophical literature you will indeed find a lot of academics who are idealists who try to justify it with quantum mechanics.

    Both of these positions are, in my view, problematic, and I like Pris’ his own solution based on Jocelyn Benoist’s philosophy of contextual realism which is in turn based off of Ludwig Wittgenstein’s writings. Benoist has written extensively against all the arguments claiming that reality is invisible and has instead argued that what we experience is objective reality as it is exists independent of the observer but dependent upon the context of the observation. Thus he is critical of pretty much all of modern philosophers who overwhelmingly adhere either to metaphysical realism or to idealism. There is no mind-body problem under this framework because reality was never invisible to begin with, so there is no “explanatory gap.”

    Apply this thinking to quantum mechanics then it also provides a solution to the measurement problem that is probably the simplest and most intuitive and is very similar to Carlo Rovelli’s interpretation. Reality depends upon context all the way down, meaning that the properties of systems must be context variant. And that’s really the end of the story, no spooky action at a distance, no multiverse, no particles in two places at once, no language of observer-dependence, etc.

    Whenever you describe physical reality, you have to pick a coordinate system as reality depends upon context and is not “absolute,” or as Rovelli would say, reality depends upon the relations of a system to every other system. Hence, if you want to describe a system, you have to pick a coordinate system under which it will be “observed,” kind of like a reference frame, but the object you choose as the basis of the coordinate system has to actually interact with the other object. The wave function then is just a way for accounting for the system’s context as it incorporates the relations between the system being used as the basis of the reference frame and the object that it will interact with.

    Basically, it is not much different from Copenhagen, except “observer-dependence” is replaced by “context-dependence” as the properties of systems are context variant and any physical system, even a rock, can be used as the basis of the coordinate system. But, of course, if you want to predict what you will observe, then you always implicitly use your own context as the basis of the coordinate system. This is a realist stance, but not a metaphysical realist stance, because the states of particles are not absolute, there is no thing-in-itself, and the reality is precisely what you perceive and not some waves in Hilbert space beyond it (these are instead treated as tools for predicting what the value will be when you measure it, and not itself an entity). Although, it is only whether or not they have a property at all that is context variant.

    If two observers have interacted with the same particle, they will agree as to its state, as you do not get disagreements of the actual values of those particles, only whether or not they have a state at all. They would not be verbal disagreements either, because if an observer measures the state of a particle then goes and tells it to someone else, then it also indirectly enters their context as they would become correlated with that particle through their friend. You only get disagreements if there is no contact. For example, Wigner’s friend paradox, where his friend has measured the particle but has not told him the results nor has he measured it himself, from his context it would indeed have no state.

    The “collapse” would then not be a collapse of a physical “wave” but, again, reality is context variant, and so if you interact with a system, then it changes your relation to it, so you have to update the wave function to account for a change in context, kind of like if you change your reference frame in Galilean relativity. Everything is interpreted through this lens whereby nature is treated as context variant in this way, and it resolves all the paradoxes without introducing anything else. So if you can accept that one premise then everything else is explained. By abandoning metaphysical realism, it also simultaneously solves the other philosophical problems that originate from that point of view, i.e. the “hard problem” does not even make sense in a contextual realist framework and is not applicable.


  • Yes, there are a lot of intuitive understandings in the literature if you’re willing to look for it. The problem is that most people believe in a Newtonian view of the world which just is not compatible with quantum physics, so it requires you to alter some philosophical beliefs, and physics professors don’t really want to get into philosophical arguments, so it’s not really possible to reach a consensus on the question in physics departments. Even worse, there’s rarely a consensus on anything if you go to the philosophy department. So it’s not really that there are not very simple and intuitive ways to understand quantum mechanics, it’s that it’s not possible to get people to agree upon a way to interpret it, so there is a mentality to just avoid interpretation at all so that students don’t get distracted from actually understanding the math.